Back
Close

Rotational division numbers

Statement
Given a positive integer [[k]], a rotational division number associated with [[k]] is a positive integer [[n]] such that: - the foremost digits of [[n]] are [[k]], - [[n]] is divisible by [[k]], and - upon division by [[k]], the quotient is also [[n]], except the [[k]] is now at the end of [[n]]. For example, if [[k]] = {{4}}, then [[n]] = {{410256}} satisfies, as `410256/4=102564`and if [[k]] = {{19}}, then [[n]] = {{190100052659294365455502896261}} satisfies, as `190100052659294365455502896261/19=010005265929436545550289626119` Note that we let leading zeroes be allowed. The task is for given [[k]], give the length [[l]] of the smallest rotational division number [[n]] associated with [[k]].

Input description
<<Line 1:>> A positive integer [[k]].

Output description
<<Line 1:>> A positive integer [[l]].

Constraints
1 ≤ [[k]] ≤ 1000 A rotational division number [[n]] is guaranteed to exist for each [[k]].

Game modes

Test cases
Test 1 Test
Input
4
Output
6

Validator 1 Validator
Input
1
Output
1

Test 2 Test
Input
19
Output
30

Validator 2 Validator
Input
3
Output
28

Test 3 Test
Input
9
Output
44

Validator 3 Validator
Input
6
Output
58

Test 4 Test
Input
12
Output
108

Validator 4 Validator
Input
13
Output
432

Test 5 Test
Input
14
Output
1398

Validator 5 Validator
Input
20
Output
1998

Test 6 Test
Input
54
Output
5398

Validator 6 Validator
Input
69
Output
6898

Test 7 Test
Input
101
Output
50499

Validator 7 Validator
Input
108
Output
161997

Test 8 Test
Input
215
Output
303504

Validator 8 Validator
Input
446
Output
333498

Test 9 Test
Input
603
Output
904497

Validator 9 Validator
Input
669
Output
1003497

Test 10 Test
Input
989
Output
2028

Validator 10 Validator
Input
990
Output
1484997

Test 11 Test
Input
223
Output
210

Validator 11 Validator
Input
209
Output
408

Solution language

Solution

Stub generator input