If it is a triangle...
Statement
In mathematics, when proving inequalities, we are sometimes given a statement that variables [[a]], [[b]] and [[c]] are edges of a triangle and thus [[a]]<[[b]]+[[c]], [[b]]<[[c]]+[[a]] and [[c]]<[[a]]+[[b]].
In such conditions, it is a good idea to introduce new variables [[x]], [[y]] and [[z]] so that:
[[a]] = [[x]] + [[y]]
[[b]] = [[y]] + [[z]]
[[c]] = [[z]] + [[x]]
Then the inequalities simplify down to 0<[[x]], 0<[[y]], and 0<[[z]].
Your task is to find these [[x]], [[y]] and [[z]].
Input description
<<Three lines:>> integers [[a]], [[b]] and [[c]] - the lengths of the three sides of an alleged triangle.
Output description
<<Three lines:>> [[x]], [[y]], [[z]] sorted in <<ascending order>>.
[[x]], [[y]] and [[z]] may only be integers or half-integers, in which case output them with a "{{.5}}" ending.
If a triangle with the given borders does not exist (positive [[x]], [[y]] and [[z]] do not exist), instead write "{{NO}}".
Constraints
0 < [[a]], [[b]], [[c]] ≤ 10^3
Game modes
Test cases
We all know the 3-4-5! Test
Input
3
4
5
Output
1
2
3
Validator 1 Validator
Input
32
40
52
Output
10
22
30
Let's try an isosceles triangle Test
Input
4
4
6
Output
1
3
3
Validator 2 Validator
Input
100
100
140
Output
30
70
70
Don't try to hack this! Test
Input
22
17
7
Output
1
6
16
Validator 3 Validator
Input
350
301
197
Output
74
123
227
Time to say NO Test
Input
2
4
2
Output
NO
Validator 4 Validator
Input
500
1000
500
Output
NO
Decimals Test
Input
5
6
4
Output
1.5
2.5
3.5
Validator 5 Validator
Input
42
50
71
Output
10.5
31.5
39.5
The final one... Test
Input
9
5
17
Output
NO
Validator 6 Validator
Input
107
99
298
Output
NO
Solution language
Solution
Stub generator input